AutolabelDataset
Autolabel Dataset¶
Autolabel interacts primarily with dataset objects. These dataset objects are the input and the output for every agent function. agent.run
, agent.plan
and agent.transform
all accept AutolabelDataset as an input and output an Autolabel Dataset. Use this object to talk to autolabel and run evaluations, transformations as well as understand the labels that a model outputs. We provide utility functions to help with understanding where the labeling process can be improved.
The dataset for handling all operations on the dataset.
Source code in src/autolabel/dataset/dataset.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
|
__init__(dataset, config, max_items=None, start_index=0, validate=False)
¶
Initializes the dataset. Args: dataset: The dataset to be used for labeling. Could be a path to a csv/jsonl file or a pandas dataframe. config: The config to be used for labeling. Could be a path to a json file or a dictionary. max_items: The maximum number of items to be parsed into the dataset object. start_index: The index to start parsing the dataset from. validate: Whether to validate the dataset or not.
Source code in src/autolabel/dataset/dataset.py
__repr__()
¶
Returns the representation of the dataset. We currently represent the dataset as a pandas dataframe.
columns()
¶
completed()
¶
Filter the dataset to only include completed items. This means the labels where the llm was able to generate a label successfully.
Source code in src/autolabel/dataset/dataset.py
correct(label_column=None)
¶
Filter the dataset to only include correct items. This means the labels where the llm label was correct. Args: label_column: The column to filter on. This is only used for attribute extraction tasks.
Source code in src/autolabel/dataset/dataset.py
eval()
¶
Evaluate the dataset based on the task. We run the metrics that were specified by the task being run.
Source code in src/autolabel/dataset/dataset.py
filter(label=None, ground_truth=None, filter_func=None, label_column=None)
¶
Filter the dataset based on the label, ground truth or a custom filter function. In case multiple filters are applied, the filters are applied in the following order: label -> ground_truth -> filter_func Args: label: The llm label to filter on. ground_truth: The ground truth label to filter on. filter_func: A custom filter function to filter on. label_column: The column to filter on. This is only used for attribute extraction tasks.
Source code in src/autolabel/dataset/dataset.py
filter_by_confidence(threshold=0.5)
¶
Filter the dataset to only include items with confidence scores greater than the threshold. Args: threshold: The threshold to filter on. This means that only items with confidence scores greater than the threshold will be included.
Source code in src/autolabel/dataset/dataset.py
incorrect(label=None, ground_truth=None, label_column=None)
¶
Filter the dataset to only include incorrect items. This means the labels where the llm label was incorrect. Args: label: The llm label to filter on. ground_truth: The ground truth label to filter on. label_column: The column to filter on. This is only used for attribute extraction tasks.
Source code in src/autolabel/dataset/dataset.py
non_completed()
¶
Filter the dataset to only include non completed items. This means the labels where the llm was not able to generate a label or there was some error while generating the label.
Source code in src/autolabel/dataset/dataset.py
save(output_file_name)
¶
Saves the dataset to a file based on the file extension. Args: output_file_name: The name of the file to save the dataset to. Based on the extension we can save to a csv or jsonl file.
Source code in src/autolabel/dataset/dataset.py
rendering: show_root_heading: yes show_root_full_path: no